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Circular Mean Filtering For Textures Noise Reduction 
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Abstract: In this paper, a special preprocessing operations (filter) is proposed to decrease 
the effects of noise of textures. This filter using average of circular neighbor points (C-
mean) to reduce noise effect. Comparing this filter with other average filters such as square 
mean filter and square median filter indicates that it provides more noise reduction and 
increases the classification accuracy. After applying filter to noisy textures some Local 
Binary Pattern (LBP) variants are used for feature extraction. The Implementation part for 
noisy textures of Outex, UIUC and CUReT datasets shows that using proposed filter 
increases the classification accuracy significantly. Furthermore, a simple and new technique 
is proposed that increases the speed of c-mean filter noticeably. 
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1. Introduction1 
Texture classification plays an important role in image 
processing and computer vision. It has been widely used 
in many applications. Some areas such as fabric defect 
detection [1, 2], remote sensing [3], medical image 
processing [4], face recognition [5], and image retrieval 
[6] are related to texture classification. Texture analysis 
methods are usually divided into structural, statistical, 
model based and frequency based methods. 

The structural approaches, such as topological 
texture descriptors [7], morphological operators [8, 9] 
and filtering techniques [10] are used for description of 
patterns and their placement. The statistical method 
including some methods such as co-occurrence matrix 
[11] and local binary patterns [12]. These methods are 
based on extracting the statistical properties of textures. 
Third group is model-based methods such as hidden 
markov [13], autocorrelation [14] and autoregressive 
[15] models. Finally, the fourth analyzing methods are 
frequency-based or transform approaches such as some 
Gabor and wavelet based algorithms [16-18]. 

Recently most of these researches focus on statistical 
analysis of texture. Statistical methods are not only 
simple but also they can be used for all types of 
textures. Also they can be combined with other types of 
texture analysis approaches to increase the performance 
of texture classification [19-21]. One of the important 
statistical methods for texture feature extraction is Local 
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Binary Pattern (LBP). LBP is introduced by Ojala et al. 
[22]. It is a simple operator to describe local texture 
patterns, and it has achieved high performance for 
classification results on representative texture datasets 
[23]. The main goal of proposing LBP was related to 
texture classification. But LBP has been used for many 
other applications [24-27]. 

Some versions of LBP were proposed [28, 29]. 
LBPP,R

୰୧୳ଶ has become the most popular since it decreases 
the feature number significantly and obtains high 
discriminative ability. Ojala et al. divided local patterns 
into two groups; uniform and non-uniform patterns. 
They proved that the uniform-patterns have more 
discriminative information than non-uniform patterns. 
Also noise decreases the percentage of uniform patterns. 
After that, some extended LBPs [30, 31] were 
introduced that could produce more features for each 
texture than LBPP,R

୰୧୳ଶ. In these methods, the number of 
features was increased exponentially when the neighbor 
points of LBP grew. There are many other methods that 
are proposed based on LBP. 

Such as all other local operators, LBP is sensitive to 
noise. Therefore some noise robust LBP methods are 
introduced. Improved Local Binary Pattern (ILBP) is 
proposed by Jin et al. [32]. It is similar to LBP but in 
ILBP the average value of the whole neighborhood 
including the center is used instead of center point. Tan 
and Triggs [33] proposed Local Ternary Pattern (LTP) 
to quantize the difference between a pixel and its 
neighbor points into three levels. In LTP it is necessary 
to set threshold value properly. Liao et al. proposed 
dominant LBP (DLBP) [34]. It used the most frequently 
patterns to extract more discriminative features. It 
selected the 80 % of the most frequently appeared local 
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patterns from histogram of LBP and remain patterns that 
contains noise non-uniform are removed from features. 
Median Binary Patterns (MBP) [35] is proposed by 
Hafiane et al. MBP is robust to noise because it used 
median gray value of the neighborhood points instead of 
the center point. Another form of LBP that is resistant to 
noise is fuzzy local binary pattern FLBP [36] or soft 
LBP [37]. In FLBP each pixel may contribute to several 
bins in the histogram of possible patterns by different 
membership values. The FLBP is a very time 
consuming method. Fathi et al. [38] proposed a noise 
tolerant method (NTLBP) that combined a circular 
majority voting and a new LBP version and regrouped 
the non-uniform LBP in order to better performance. 
Ren et al. [39] proposed a much more efficient Noise 
Resistant Local Binary Pattern (NRLBP) approach. The 
NRLBP method restores some of the image local 
structures that are cropped by noise. This method is very 
time consuming and it cannot generalize to larger scales 
neighborhoods and it is efficient only for small 
neighborhood such as R = 1 and P = 8. Lui et al. [40] 
proposed Binary Rotation Invariant and Noise Tolerant 
(BRINT) texture classification method that uses mean 
of neighbor points for LBP. BRINT decreases the 
effects of noise by using the mean value of some 
sequential neighbor points instead of each neighbor 
points. In other words it declines the noise value from 
the neighbor points. In BRINT method multi resolution 
LBP is used to increasing the classification accuracy. 
Some methods such as Completed Robust Local Binary 
Pattern (CRLBP) [41] used Weighted Local Gray Level 
(WLG) to reduce the effect of noise on the center point 
of LBP. This method used average of center and 
neighbor points of LBP instead of center point. It is 
similar to ILBP method [32], but CRLBP used a weight 
value for center point when it calculates the average of 
the points. The aforementioned methods are some of the 
most popular LBP that are resistant to noise. There are 
some noise robust LBPs. Kylberg et al. reviewed and 
compared most of them in [42]. 

In spite of almost all noise robust LBP methods that 
extend LBP to make it resistant to noise in this paper a 
prepossessing operation (filter) is proposed. Some of 
filters are general filter that are used for general images. 
However in this paper by applying the filters to noisy 
texture the noise effect is decreased. After that it is 
possible to extract feature from filtered texture by using 
LBP or any other feature extraction methods. 

This paper is organized as follows: in section two 
LBP and some last versions of LBP are explained. 
Section three presents proposed methods. Experimental 
results and conclusion are reported in section four and 
five respectively. 

 
2 Brief Review of Some LBP's 

In this section, we provide a brief review of Local 
Binary Pattern (LBP) and some state-of-the-art versions 
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Fig. 1 The process of calculating the LBP code. 
 
 
of it that used for texture classification and texture 
analysis. 
 

2.1  Local Binary Pattern (LBP) 
The LBP is a descriptor for describing texture 

features. It provides binary codes by comparing P points 
of the neighbor pixels with respect to the center pixel 
value. It generates a binary code 0 if the value of 
neighbor pixel is smaller than that of the center value of 
patch. Otherwise, it generates a binary code 1. Then the 
binary codes are multiplied with the corresponding 
weights and the results are outlined to generate an LBP 
code. This value is calculated as follows in Eq. (1): 

L (1) 

where gୡ is the pixel value of the center point and g୧ is 
the pixel value of i-th neighboring pixel, P is the 
number of neighbor pixels and R is the radius. 

sሺ (2) 

Fig. 1 shows the process of generating LBP code. In 
this figure the square neighborhood is used that is not 
rotation invariant. To obtain rotation invariance, the 
original LBP was extended to a circular symmetric 
neighbor set of P members on a circular region with 
radius R using uniform patterns [12]. The rotation 
invariant uniform LBP (LBP୰୧୳ଶ) can be obtained as 
follows (Eqs. (3)-(5)): 

LBPP,R
୰୧୳ଶሺx, yሻ ൌ ൞ sሺg୧ െ gୡሻ

Pିଵ

୧ୀ

   if U൫LBPP,R൯  2

P  1        otherwise        

 (3)

sሺg୧ െ gୡሻ ൌ ൜ 1 g୧  gୡ
0 g୧ ൏ ݃ୡ

               (4)
U൫LBPP,R൯ ൌ |sሺgPିଵ െ gୡሻ െ sሺg െ gୡሻ|  

|sሺg୧ െ gୡሻ െ sሺg୧ିଵ െ gୡሻ|
P

୧ୀଵ

 
(5)

Riu2 reflects that the rotation invariant uniform 
patterns have a U value of at most 2. U is used to 
estimate the uniformity that corresponds to the number 
of spatial transitions, i.e., bitwise 0/1 changes between 
successive bits in the circle. Fig. 2 is an example of the 
local uniform patterns with different U. 

Furthermore, LBP୰୧ and LBP୳ଶ are two other types 
of LBP that are used for texture classification. LBP୰୧ is a 
rotation invariant method but LBP୳ଶ is not. Due to high 
feature number, both of these methods are very time 
consuming methods and are not suitable for real time 
and fast texture processing. 
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